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Currently one of the most efficient approaches to space surveillance 
problem, as applied in particular to the GEO ring, consists in using auto-
matic wide-field cameras that perform nightly surveys of the whole GEO 
region visible from the given site. Whatever are the actual survey strat-
egy and sensor details, such cameras produce considerable amount of 
data per night. An additional important requirement of fast detection and 
immediate tracking of newly discovered GEO objects implies that these 
data are being processed in real time, which is a demanding task for data 
reduction software. 
Apex II is an open general-purpose software platform for astronomical 
image processing, used as a standard tool for initial data reduction by 
members of ISON collaboration. Its major focus is on consistent use of 
advanced automatic algorithms for image pre-processing, object detec-
tion and classification, accurate positional and photometric measure-
ments, initial orbit determination, and catalog matching. Here we de-
scribe a number of these techniques currently used in Apex II to support 
scanning observations of the GEO region. 

Introduction 
First of all, the term “GEO” in this paper refers indeed not only to the geostationary orbit 

itself but rather to many types of medium and high Earth orbits, including GTO, HEO and oth-
ers. Techniques described below, although they were initially developed mainly to handle GEO 
objects, are general enough to deal with optical observations of any types of space objects pro-
vided their apparent motion differs from that of field stars. If this requirement is met it is possi-
ble to adopt an imaging strategy that allows one to clearly distinguish between Earth-orbiting 
objects and field stars by their morphological properties in a single CCD image, which greatly 
increases computational efficiency of data reduction software and reliability of automatic object 
detection. 

The most obvious and important of these properties, described qualitatively, is whether a 
space object or field star is point-like or extended into “streak” by its apparent motion in the field 
of view of optical sensor during integration. According to this property, we may divide all im-
ages into four classes: 

1) point-like field stars and space objects; 
2) point-like field stars, trailed space objects; 



3) trailed field stars, point-like space objects; 
4) trailed field stars and space objects. 
The first type of images has the obvious advantage that it does not require any specialized 

image processing techniques. However, its practical use in space surveillance is limited to space 
objects with apparent motion similar to stars. Applying the same imaging strategy to all other 
types of space objects by using very short exposure times reduces sensitivity of optical sensor. 
Furthermore, as mentioned above, in this case there is no way to distinguish between space ob-
jects and field stars in a single CCD frame. This results in a need to process all detections in each 
frame, which has a great impact on the overall computational efficiency of imaging pipeline. 

The second type of imaging strategy which implies observations with sidereal tracking 
seems to have no sense at all as it also has extremely poor sensitivity of imaging system with re-
spect to space objects. 

According to this approach, the only reasonable imaging strategy in space surveillance 
implies tracking the target space object if its apparent velocity is known (like in follow-up obser-
vations of a particular object) or assuming some expected velocity if it is not (like in survey-type 
and discovery observations). Exposure time is then chosen to be long enough to allow one to dis-
tinguish between space objects and field stars and to achieve reasonable sensitivity, but not very 
long to avoid producing extremely long trails of both field stars and space objects, which impacts 
accuracy and reliability of data reduction. 

As it was mentioned above, techniques described here are applicable to a large class of 
space surveillance tasks and orbit types when the appropriate imaging strategy is used during 
observations. However, this paper focuses mainly on reduction of GEO survey data obtained 
with wide-field optical sensors as one of the most computationally challenging problems. 

Figure 1 shows an example of a typical raw CCD image, one of about a thousand pro-
duced by a 22-cm aperture 5.5°×5.5° field of view optical sensor of ISON network (Molotov et 
al., 2010) during a routine nightly GEO survey. One of the key requirements in space surveil-
lance is to minimize a delay between exposure and its final result in the form of space object co-
ordinates. Although the overall data rate (≈8 Gigabytes of pixel data and 500–1000 tracks per 
night) can be considered very moderate for a modern automated imaging system, ISON sensors 
are installed at locations with no access to supercomputing resources and even often with very 
limited Internet connection. Moreover, different sensors have slightly varying characteristics and 
details of implementation of their parts, which affects various properties of images. All these 
considerations lead to very rigid requirements for data reduction software to be, on the one hand, 
quite efficient to be able to process data in real time and, on the other hand, sufficiently flexible 
and versatile to accommodate to a wide range of input data. Unfortunately, it is hard to satisfy 
these two requirements simultaneously: excessive optimization often makes the system less 
adaptable to changing environment, while maximum flexibility entails an extra overhead of han-
dling endless possibilities. Thus data reduction software should elaborate a sort of compromise 
to be able to quickly produce a large amount of reliable data. 

Apex II Pipeline for Automatic GEO object detection 
Apex II (Devyatkin et al., 2010) is a general-purpose platform for astronomical image 

processing, modeled after such well-known scientific data analysis packages as IRAF, MIDAS, 
IDL, and MATLAB. It is implemented mostly in Python, a high-level versatile object-oriented 
scripting programming language widely adopted by the scientific community. Apex II has easily 
extendable modular structure consisting of (i) library of astronomical data reduction algorithms 
and (ii) scripts (high-level interpreted programs) for specific data reduction tasks. Design of 
Apex II and its applications in low-level analysis of data produced in observations of Earth-
orbiting objects are outlined in Kouprianov (2008). Most algorithmic details are also covered in 
that paper. Here we concentrate only on the most important features and latest algorithmic de-
velopments. 



 

Figure 1. Sample raw CCD image from GEO survey. 

Raw CCD image shown in Figure 1 displays several instrumental artifacts that need to be 
removed. The most obvious (and most annoying) of them is vignetting characteristic to many 
wide-field systems. As long as accurate CCD photometry is not required, it is sufficient to only 
flatten background to allow segmentation (separation of objects from background) by simple 
global threshold; it does not matter whether background comes from sky or vignetting or non-
uniformity of CCD chip. Figure 2 shows the result of calibration of the same image; a fast auto-
matic sky background estimation algorithm involved is described in (Kouprianov, 2008). The 
ultimate goal of initial image processing is to detect space objects (shown enlarged in Figure 2) 
and accurately determine their position in terms of α and δ. 

To achieve this, one needs first to detect reference stars and perform astrometric reduc-
tion. Given (i) LSPC (least-squares plate constants) solution and (ii) XY positions of detected 
GEO objects, their αδ positions are obtained straightforwardly. αδ positions of space objects are 
then (iii) correlated across several adjacent images of the same sky region to obtain tracks of 
GEO objects and eliminate false detections. These three major stages comprise Apex II pipeline 
for automatic reduction of space object observations. In the following section we highlight sev-
eral difficulties that arise in astrometric reduction of CCD images from GEO surveys. 



 

Figure 2. Calibrated CCD image. Regions around two GEO objects are shown enlarged. 

Reference Star Detection and Astrometry 
As it was mentioned above, the characteristic feature of CCD images from GEO surveys 

are field stars appearing as streaks. Although this is good for detecting space objects, this appar-
ently complicates dealing with reference stars themselves. Things like atmospheric turbulence, 
extinction fluctuations, noise, and optical aberrations distort star trails. As a result, a naïve global 
threshold approach often fails to detect the whole trail, especially for stars close to detection 
threshold, mostly due to their fragmentation. This is illustrated in Figure 3. 

To reduce fragmentation, we use a special kind of binary morphological filter that utilizes 
properties of star trail shapes known before processing: their length and orientation are easily 
calculated from pixel scale, exposure duration, and tracking rate, while trail width can be esti-
mated from pixel scale and seeing. The following equation defines the result of filtering: 

  (1) 



where M(x,y) is the original unfiltered binary image, M′(x,y) is filtered image, “*” denotes con-
volution, d is filter strength parameter, and filter kernel K is defined as follows: 

 

Figure 3. Binary CCD image after segmentation by global threshold: background → black, ob-
jects → white. Enlarged region containing three star trails illustrates the effect of fragmentation. 

 . (2) 

In other words, 1’s in the filter kernel reproduce the estimated shape of a star trail, with its length 
and width; if star trail orientation differs from 0 or 180°, kernel is rotated accordingly. 

Effect of the above filter is shown in Figure 4. By tuning d, one can achieve the desired 
balance between the number of fully detected real star streaks and the number of artifacts de-
tected as stars. 

We should also mention that the global threshold for reference star detection is chosen 
automatically based on image histogram. The idea behind this is quite simple: we just select such 
grayscale level that the number of pixels brighter than this level constitutes the fixed fraction of 
the total image area. Thus we get always the same fraction of image covered by reference stars, 
which helps to adapt to varying atmospheric conditions and stellar field densities. 



 

Figure 4. Binary CCD image after morphological filtering for star trail enhancement: back-
ground → black, objects → white. Enlarged region is the same as in Figure 3. 

In case of sources with noticeable apparent motion in the image, it is important to clearly 
define which point within the streak left by the source corresponds to which exact moment of 
time during integration. We choose the easiest approach and assume that the visible center of 
streak corresponds to mid-exposure time. This has a number of implications, including those re-
lated to the times of opening and closing of mechanical shutter and to the possible optical vari-
ability of sources (inherent or induced by atmosphere). However, this still remains the most ac-
curate and easy to implement method for most of real-life situations. Thus we need to obtain XY 
positions of centers of all field star trails. This is done by PSF fitting with a special type of point 
spread function suitable for trailed sources, as described in Kouprianov (2008). Other properties 
of stellar images, including their lengths, widths, and fluxes, are determined as well. Figure 5 
shows a simulated image with real field stars approximated by their ideal models obtained by 
PSF fitting. One may observe a number of artifacts there – mostly caused by overlapping of mul-
tiple star streaks. The latter is very difficult to handle, which imposes two important restrictions 
on observations: (i) exposure time should not be too long to reduce length of streaks and (ii) one 
should avoid rich stellar fields in the Milky Way. This also reduces the probability of overlap-
ping with space objects, which is critical for reliability of their detection. 



 

Figure 5. Simulation image of reference stars. 

When PSF fitting is complete, several criteria are applied to eliminate false and unreliable 
detections. Most important of them are constraints on full with at half maximum (FWHM) across 
the trail and on deviation of measured length and orientation of trail from expected. Stars that 
pass these criteria undergo the classical differential astrometric reduction sequence that includes 
matching against reference catalog and obtaining LSPC solution by fitting a parameterized plate 
model that maps XY catalog positions to measured XY positions of reference stars (see e.g. 
Green, 1985). For large fields of view common to survey cameras Tycho–2 (Høg et al., 2000) is 
the catalog of choice; however, for instruments with fields of view less than about 1° UCAC3 
(Zacharias et al., 2009) appears to be also suitable. 

Apex II has a number of predefined plate models, both linear and non-linear in parame-
ters. An important issue with wide-field optical systems is the presence of residual optical aber-
rations, especially at image corners, that need to be eliminated to achieve accurate astrometry 
across the whole field of view. From the point of view of differential astrometry, any optical ab-
erration can be treated as generalized distortion, i.e. a systematic displacement of centroids of 
stars; then, if we have enough reference stars, distortion parameters are obtained just as any other 
plate constants. An example of such model is a simple cubic model with all terms: 



 

Figure 6. Example of optical distortions of a typical ISON survey camera. Displacement vectors 
are enlarged by factor 20. 

  (3) 

where x and y are catalog positions, while x′ and y′ are measured positions. Another one (Brown, 
1966) is suitable for handling pure radial and tangential distortions: 

  (4) 

where r2 = x2 + y2. 
However, when optical distortions become extremely large, even choosing the appropri-

ate plate model might appear insufficient. Due to very large deviations of actual reference star 
positions from their expected positions, especially at the peripheral parts of image, catalog 
matching algorithm may fail with such stars, so they won’t be included in the final LSPC solu-
tion. This will result in systematic errors at image edges. An example of image with strong opti-
cal distortions is shown in Figure 6. The solution is to perform all astrometric reduction steps 
several times, with more and more peripheral stars being included at each iteration as LSPC so-
lution becomes more and more reliable over the whole field of view. This technique leads to ex-
cellent accuracy even in the presence of strong distortions provided plate model is adequately 
chosen. As a real-life example we would mention the pure positional accuracy of about 0.1″ 
along each axis for pixel scale of 10″/ pixel that is achieved in good atmospheric conditions. 

GEO Object Detection 
As one can see from Figure 4, space objects may become apparent even in the course of 

reference star detection, so, at first glance, there is no need in a separate space object detection 



   

Figure 7. Effect of morphological filter (5), (6) on a fragment of binary image containing star 
trails and a single GEO object. Left: before filtering; right: after filtering. 

step. Unfortunately, this is the case only for bright point-like objects. Fainter objects, as well as 
those having considerable apparent motion directed across diurnal motion of stars, are wiped out 
by star trail enhancement filter. Moreover, for better computational performance, the global 
threshold for reference star detection is chosen comparatively high to take only as many stars as 
needed for accurate astrometry, so we merely loose faint space objects. Therefore it is necessary 
to establish a separate space object detection stage, with as low detection threshold as possible 
(in practice, we use thresholds of down to 2.5σ, where σ is noise level). 

Of course, such low threshold values would result in large amounts of false detections 
(here a field star is also considered a “false detection”). Fully processing all these detections to 
determine whether they are false or not would be impractical from the computational point of 
view. Hence we need to work out a process that quickly eliminates most of false detections, in-
cluding stars, as early as possible, leaving space objects intact. Here the morphological differ-
ence between space objects and stars comes into play. 

One of the possible ways to remove groups of pixels left by star trails is to use technique 
similar to that described in the previous section, but acting in the opposite direction. Filtering 
operator is now defined as 

  (5) 

 
Note that “>” in (1) is replaced by “<” here, which means that we are eliminating structures of 
the given shape instead of highlighting them. Since we need to remove all streak-like structures 
of known length and directed along the line of diurnal motion of stars, the corresponding filter 
kernel K is defined as 

 . (6) 

And, again, the kernel is rotated appropriately according to the orientation of star trails if it dif-
fers from 0 or 180°. Just as before, d controls strength of filter and is chosen empirically for each 
instrument and observation site to find optimum between the efficiency of elimination of star 
trails and undesirable effect of filter on (especially very bright) space objects. 

Figure 7 illustrates how this filter helps to eliminate most of star trails and noise detec-
tions. However, considerable amount of noise detections still remains after this process, as one 
can see from the right part of Figure 7. These are removed by one more filter of the same class as 
(1) and based on the same idea, but now with a different kernel 



 . (7) 

Here 1’s fill the footprint of the conventional image PSF (which is 5×5 pixels in this example), 
so the filter (1), (7) in fact highlights real structures that are blurred by atmosphere and optics, at 
the same time eliminating sparsely distributed pixels produced by noise and remains of faint star 
trails. We should mention that our approach resembles PSF convolution technique widely used 
to improve detectability of faint objects. However, PSF convolution is very prone to false detec-
tions triggered by bright spots from either noise fluctuations or cosmetic defects of CCD chip. 
On the contrary, morphological filter described here acts on a binary image and is free from this 
drawback. This can be easily seen in Figure 8. 

   

Figure 8. Effect of morphological filter (1), (7) on a fragment of binary image with star trails 
eliminated by filter (5), (6). Left: before filtering (same as Figure 7 right); right: after filtering. 

Then potential space objects detected with the help of these two morphological filters un-
dergo PSF fitting procedure to obtain their accurate positions, fluxes, and shapes. Based on their 
individual PSF properties, some possible spurious detections are removed. For the rest of them, 
their αδ positions are calculated using LSPC solution obtained as described above. This com-
pletes the second of three main data reduction stages. 

Cross-correlation of Detections 
Despite the thorough elimination of possible spurious detections described above, images 

may still contain some false objects – especially if they were obtained in bad atmospheric condi-
tions. The only way to remove them is to compare a set of adjacent images of the same sky area 
to find objects that are common to all (or at least most of) these images. Success of this greatly 
depends on the survey planning strategy: duration of a series should not be too long, or else fast-
moving space objects will leave the field of view, and combination of exposure duration and 
density of stellar field should prevent frequent collisions of space objects with star trails. 

Cross-frame correlation is implemented as a kind of brute-force approach: we construct 
all possible linear or slightly curved paths through all combinations of detections in (α,δ,t) space. 

Each path is an independent 1st or 2nd degree polynomial fit to  and , where k enumerates 
sequential images in the series and ik enumerates individual detections in k-th image. Such path 
is considered valid, i.e. corresponding to a track of a real space object, if it satisfies a certain 
number of constraints on (i) the absolute value of velocity, (ii) proximity of velocity to apparent 
velocity of stars due to their diurnal motion, (iii) path curvature, and (iv) deviations of individual 



detections from their path. Of course, the number of all possible combinations of detections is 
enormous even for comparatively small number of images in the series (usually 5 to 10) and in-
dividual detections in each image (usually one or two dozens), so we exclude deliberately false 
paths as soon as possible to reduce the number of variants to try. Figure 9 gives an idea of this 
procedure (the upper object in Figure 2 is close to x = 0, while the lower one – to x = 200). 

 

Figure 9. Cross-frame correlation of detections. Left: valid tracks from the first two frames; 
right: only two valid tracks left after scanning all 5 frames in the series. Positions of individual 
detections in each of the 5 images are indicated by circles. 

In addition to four constraints mentioned above, cross-frame correlation pipeline discards 
tracks with less than [N/2] + 1 or 4 detections, whichever is larger, where N is the number of im-
ages in the series. Collisions that occur when a single detection belongs simultaneously to multi-
ple tracks are handled by leaving detection in that track where its deviation is smaller. For all 
tracks that pass the procedure described we perform initial orbit determination, check that the 
orbit is valid, and exclude outliers. 

All tracks produced by the process described above are the final result of initial data re-
duction for GEO surveys. Apex II pipeline that implements this algorithm can be fine-tuned to 
achieve the desired balance between reliability of its result (i.e. number of false detections) and 
the overall sensitivity with respect to faint and/or fast-moving space objects. It is also possible to 
visually check space objects detected and make any necessary changes to results of automatic 
data reduction. 

Computational Efficiency and Real Time 
As we already said at the beginning of this paper, an important requirement for automatic 

GEO survey data reduction software is its ability to process all data in real time on very moder-
ate computer hardware. Moreover, this should be achieved without excessive optimization to al-
low working with varying implementations and bundling of optical sensors. 

In this respect, solutions based on Python programming language appear to help in 
achieving the desired balance between these two conflicting prerequisites. Although scripting 
languages are generally thought to be relatively slow compared to compiled languages, in reality 
the situation is often just the opposite. The reason is that high-level algorithmic improvements 
can result in far more dramatic increase in computational efficiency than low-level optimization 
available to compiled languages. Indeed, Python allows one to combine both types of optimiza-
tion. Being a high-level language, it allows to easily operate with large blocks of code almost at 
the level of their algorithmic description, which greatly simplifies complex algorithmic optimiza-
tions. At the same time, low-level computations, especially most time-consuming of them, that 
form Python library for scientific computing are already implemented in C or Fortran and are 
well tested and tuned over the years of their use. Finally, dynamic nature of the language and its 



run-time flexibility contribute greatly to adaptability of Apex II to different types of images, in-
strumentation, and atmospheric conditions. 

Python has also built-in support for simple symmetric process-based parallelism which 
becomes essential when running on multi-processor and multi-core computers. Although the 
standard Python scientific computing library mostly lacks automatic support for multiple proces-
sors, Apex II library eliminates this defect on a higher level. Most of algorithms that are inher-
ently parallel are written in the way that automatically takes advantage of multiple processors; 
furthermore, multiple input images are also processed in parallel. A combination of these two 
approaches leads to effective performance increase almost equal to the number of processors 
available. 

To give a rough idea of computational performance of Apex II when processing GEO 
survey data, we use as an example one of ISON optical sensors with 5.5°×5.5° field of view, 
3K×3K CCD chip, and 4-core 2.8GHz computer. The full data reduction pipeline partly de-
scribed above takes about 45 seconds in average to process 4 images (one per core) in parallel. 
On the other hand, depending on survey strategy, optical sensor produces 20 to 30 frames in 10 
minutes, i.e. less than 4 frames per minute – so data reduction performs at least 1.3 times faster. 

Unfortunately, most of CPU time is taken by pixel operations, including mainly back-
ground estimation, noise statistics, filtering and PSF fitting. Most of such operations scales 
roughly as the number of CCD chip pixels, so processing a 4K×4K image would take ≈1.7 more 
CPU time, which already breaks real-time requirements. However, by slightly adjusting survey 
strategy and/or making background estimation a bit coarser, we can meet this requirement even 
in that case.  

Conclusions 
Here we described several of many challenges arising in the task of real-time automatic 

reduction of GEO survey data in particular and of wide-field imaging data for various types of 
high Earth-orbiting objects in general. We described the possible methods to solve some of these 
problems and how they are implemented in Apex II, a Python-based software platform for astro-
nomical image analysis used by ISON members and other teams to obtain positional and photo-
metric measurements of Earth satellites, space debris, asteroids and other near and deep space 
objects. 

The first group of problems is related to differential astrometric and photometric reduc-
tion of CCD images with trailed reference stars – a field that is practically not covered by widely 
used image analysis software. Algorithms involved include a special class of morphological fil-
ters that helps detecting star trails and a generalized PSF fitting technique suitable for trailed 
sources. A special treatment is also required to handle strong optical distortions of wide-field 
imagers: in such case iterative  LSPC reduction with plate model containing distortions can help. 

The second group is connected with detection of space objects in a single CCD image 
that look differently than star trails. Solution proposed here involves the same class of morpho-
logical filters that is used to free binary images from anything except such objects. 

A separate problem is correlation of individual detections from several CCD images into 
a single track of space object. This problem is solved by constructing all possible linear or 
slightly curved paths in (α,δ) space that approximate measured positions of detections as they 
move from image to image by a smooth curve, with a set of constraints that help to eliminate 
false detections remaining. 

The last group of problems is the overall computational efficiency of data reduction and a 
demand for real-time processing on ordinary computer hardware. Apex II faces these problems 
by choosing C and Fortran implementations of most time-consuming parts of algorithms that are 
well-tuned and tested. At the same time, most powerful optimizations, including support for 
multi-processor computers, are done on Python level that almost coincides with the level of algo-
rithmic description. 



Therefore, currently Apex II answers all demands for automatic real-time processing of 
GEO survey data and observations of other similar classes of objects that arise in routine opera-
tion of ISON network. 
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