First Orbit Determination with Numerical Methods based on Short Arcs Acquired in Space Debris Surveys

> <u>Tim Flohrer</u>¹, Gerhard Beutler², Thomas Schildknecht², Reto Musci²

¹Aboa Space Research Oy (ASRO) at ESA/ESOC Space Debris Office, ESOC, Darmstadt, Germany, tim.flohrer@esa.int ²Astronomical Institute, University of Bern, Bern, Switzerland

PEDAS1-0007-08

Wednesday, 16 July 2008, 1740-1800 37th COSPAR Scientific Assembly, 13 – 20 July 2008, Montreal, Canada

- Introduction
- Method
- Application
- Outlook
- Summary

Outline

- Introduction
 - Short arcs from optical surveys (angular measurements)
 - Space-based observations
 - Correlation in survey-only strategies

Motivation

- Surveys for space debris
 - Improvement and validation of space debris environment models
 - Build-up and maintenance of catalogue of orbital elements
- Initial orbit determination (IOD) is a crucial step :
 - Size estimation from apparent magnitude and orbit (if statistically sampling)
 - IOD limits
 - Performance of catalogue correlation
 - Re-acquisition scenario
 - Object identification
 - Combining heterogeneous tracks ('arclets') from multiple sites
 - Measurement accuracy (pixel scale, SNR limits)
- Typical surveys provide very short arclets
 - Limits of the current sensor technology : FoV diameter vs. aperture
 - Survey patterns aiming to cover larger areas

- Introduction
- Method

- Implementation into the CelMech program system (Beutler, 2005)
 - ORBDET module : circular OD, "boundary value", improvement step
 - Consideration of angular measurements (optical observation systems)
- New : BNBN2D = derivation of the "boundary value" method
 - Two-dimensional search : systematically varying topocentric ranges at boundary epochs of the observed arc
 - Approximation of observed arc through truncated Taylor series
 - Identification of local minima of the "observed-computed" residuals (over all available observations within arc)
 - Consider the particular solution of the equation of motion

t

e

(t

R

A

r (*t* - 🖍)

S

B

- Observer **R**(t), observations **e**(t)
 - → moving observer
- Object **S**(t)
- Topocentric ranges ρ(t)
- e(t) in equatorial
 coordinate α and δ
- Arclet :
 - Boundaries A and B
 - *n* observations in (A,B)
 - Approximations for A and B from observations

Taylor-series approximation

$$\mathbf{r}(t) = \sum_{j=0}^{n} (t_A - t)^j b_j$$
$$\ddot{\mathbf{r}}(t) = \sum_{j=2}^{n} j(j-1)(t_B - t)^{j-2} b_j$$

Taylor-series approximation

$$\mathbf{r}(t) = \sum_{j=0}^{n} (t_A - t)^j b_j$$

$$\mathbf{A} = \begin{bmatrix} 1 & t_A - t & (t_A - t)^2 & (t_A - t)^3 \\ 1 & t_B - t & (t_B - t)^2 & (t_B - t)^3 \\ 0 & 0 & 2 & 6(t_A - t) \\ 0 & 0 & 2 & 6(t_B - t) \end{bmatrix}$$

$$\mathbf{b} = (b_0, b_1, b_2, b_3)^T$$

$$\mathbf{b} = \begin{pmatrix} r_A, r_B, -GM \frac{r_A}{r_A^3}, -GM \frac{r_B}{r_B^3} \end{pmatrix}^T$$

Taylor-series approximation

$$\mathbf{r}(t) = \sum_{j=0}^{n} (t_A - t)^j b_j$$

$$\mathbf{A} = \begin{bmatrix} 1 & t_A - t & (t_A - t)^2 & (t_A - t)^3 \\ 1 & t_B - t & (t_B - t)^2 & (t_B - t)^3 \\ 0 & 0 & 2 & 6(t_A - t) \\ 0 & 0 & 2 & 6(t_B - t) \end{bmatrix}$$

$$\mathbf{b} = (b_0, b_1, b_2, b_3)^T$$

$$\mathbf{b} = (b_0, b_1, b_2, b_3)^T$$

$$\mathbf{b} = (r_A, r_B, -GM\frac{r_A}{r_A^3}, -GM\frac{r_B}{r_B^3})^T$$

solve for **b** : **A** is static (and for n = 3 **A**⁻¹ is easy), modify only **I** for various combinations of ρ_A and ρ_B

- Search for optimal fit to observation arc
- Criterion : RMS of "observed-computed" of α and δ

$$B\left(\varrho_A, \varrho_B\right) \approx \sqrt{\frac{\sum_{i=1}^{n_{obs}} \cos^2(\delta_i^O) \left(\alpha_i^O - \alpha_i^C\right)^2 + \left(\delta_i^O - \delta_i^C\right)^2}{2 n_{obs}}}$$

- Previous implementation : 1D-search $\rho_{B}(\rho_{A}) \rightarrow 2D$ -search
- Problem : find minima (maybe sharp)
 - Adaptive fine-search
 - Repeat entire estimation with t' replacing t (if enough observations are available)
- Example : space-based observation from GEO sensor (t = 280s)

Minima search $\sigma = 0.0$ "

Minima search $\sigma = 1.0^{"}$

Minima search $\sigma=2.5$ "

Minima search σ =5.0"

- Introduction
- Method
- Application
 - Simulated space-based observations
 - Application to ESA surveys

Simulated space-based obs.

- ESA study "Space-Based Optical Observation of Space Debris" : <u>ASRO</u>, NLR, AIUB (goal : characterisation small-sized environment)
 - LEO (SSO) observing LEO
 - subGEO observing GEO
 - GEO (piggy-back, North-pointing)
- Simulation method
 - ESA's PROOF : topocentric ranges and relative velocity
 - ORBDET : simulate observations (with astrometric noise : Noise levels (single obs) : 0", 0.5", 1", 2.5", 5")
- Test : Variation of "middle" epoch *t*
- Evaluation of determined orbital elements vs. middle epoch
 - → analysis of repeated solutions may partly compensate noise!

LOS

Simulated space-based obs.

Object	a [km]	e [-]	i [deg]	Ω [deg]	arc [s]
GEO-1	28568	0.48	13.50	96.29	282
GEO-2	26723	0.65	66.94	-101.83	120
GEO-3	40950	0.03	11.14	42.34	212
GEO-4	24681	0.72	6.83	105.47	210
GEO-5	34060	0.22	3.93	-23.71	776
LEO-1	7923	0.00	102.38	177.92	24
LEO-2	8093	0.02	74.07	146.40	11
LEO-3	10070	0.32	57.04	-134.30	26
LEO-4	7771	0.01	101.73	150.63	48
LEO-5	25085	0.72	4.24	-81.80	9

Simulated space-based obs. GEO-1

Simulated space-based obs. GEO-3

Simulated space-based obs. GEO-5

Application to ESA surveys

Application to ESA surveys

Object	a [km]	e [-]	i [deg]	Ω [deg]	Class
E07311A	41334	0	9.52	-32.45	GEO
E07343D	42026	0.49	11.23	3.55	AMR GEO
E08035A	41206	0.05	12.95	-0.14	GEO
E08061B	23162	0.71	7.3	23.23	GTO
E08125C	42302	0.21	6.65	-41.03	AMR GEO

• Results in *i* - Ω and in *e* - *a* space (with errorbars)

- Faint dot : from single arclet
- Prominent dot : from two consecutive arclets
- Indicator "truth" : data from long arc fit (months) (circle refers to middle epoch of all observations)

Application to ESA surveys E07311A

Application to ESA surveys E07343D

Application to ESA surveys E08035A

Application to ESA surveys E08061B

Application to ESA surveys E08125C

Application to ESA surveys All test objects

Application to ESA surveys E07311A

Application to ESA surveys E07343D

Application to ESA surveys E08035A

Application to ESA surveys E08061B

Application to ESA surveys E08125C

Application to ESA surveys All test objects

Outline

- Introduction
- Method
- Application
- Outlook

Outlook

- Inclusion of range observations :
 - Possible, but each range observation adds one line to A
 - Optimal (maybe) : use ranges to limit search range in $\rho_{_{\!\!A}}$ and $\rho_{_{\!\!B}}$
 - How much is the allowed time difference between radar and optical observations?
- Application to real "survey-only" tests
 - Does BNBN2D help in correlation process?
 - Trade-offs with survey-only strategy (pattern) of wide-field sensors

Outline

- Introduction
- Method
- Application
- Outlook
- Summary

Summary and Outlook

Implementation

- 2D search variant (BNBN2D) of boundary value FOD into CelMech
- Direct interface to ESA's PROOF-tool via plugin-option
- BNBN2D :
 - Extremely flexible tool for various work(s)
 - Easy implementation (on-board?)
 - If $\rho_{_{A}} \approx \rho_{_{B}}$: alternative to already employed ground-based FOD
 - Better for eccentric orbits, suitable for space-based observations
 - Typical limits of FOD apply
 - Length of the arclet vs. measurement accuracy :
 - (LEO space-based scenario, small FoV survey telescopes)
 - Projection effects" :
 - Pointing in-flight direction
 - Orthogonal to debris orbital plane, ...

