ESA's Process for the Identification and Assessment of High-risk Conjunction Events

<u>Tim Flohrer</u>¹, Holger Krag², Heiner Klinkrad²

 ¹ Aboa Space Research Oy (ASRO) at ESA/ESOC Space Debris Office, ESOC, Darmstadt, Germany, tim.flohrer@esa.int
² ESA/ESOC Space Debris Office, ESOC, Darmstadt, Germany

PEDAS1-0019-08

Thursday, 17 July 2008, 1400-1420

37th COSPAR Scientific Assembly, 13 – 20 July 2008, Montreal, Canada

Outline

- Introduction
- Scheduled daily analyses and high-risk events
- Automated orbit determination from radar tracks
- Recent high-risk conjunction events
- Conclusion and outlook

Outline

- Introduction
 - Conjunction analysis at ESA's Space Debris Office
 - Tools : CRASS and ODIN
 - Conjunction event statistics

Conjunction analyses at ESA's Space Debris Office

- ESA is providing an operational collision avoidance service (at present : ERS-2 and Envisat, (790 x 790km x 98.5 deg))
- Predictions from TLE data from US Space Surveillance Network
- High-risk event ($P > 10^{-4}$)
 - → Operator decision on acquisition of additional tracking data (German radar TIRA at FGAN)
 - → Improved state and covariance information
 - → Re-analysis of collision risk
 - → Avoidance manoeuvre if persisting collision risk
 - → Post-event analysis

Tools: CRASS and ODIN

- Space debris software at ESOC Sophisticated stand-alone tools
 - CRASS (Collision Risk Assessment Software)
 - ODIN (Orbit Determination with Improved Normal Equations)
 - Processing of tracking data
 - Generation of pseudo-tracking data from TLEs (→ initial cov.)
 - Orbit determination → states and error co-variances at conjunction epoch
 - Developed by GMV (Alarcon et al. (2004, 2005) ; Klinkrad et al. 2005)
- Software is used in operational context
 - Customisation and optimisation to ESOC mission procedures, data interfaces, computing infrastructure

CRASS / ODIN Outline

Conjunction Event Statistics ERS-2

Analysis period

Conjunction Event Statistics Envisat

Outline

- Introduction
- Scheduled daily analyses and high-risk events
 - Operational service
 - Identified shortcomings

Operational CRASS service

- 2002 development and installation at Sun/Solaris platform
- 2008 migration to Linux OS
 - 2 identical, parallel installations ensuring (some) redundancy
 - New analysis and visualisation options (basis : GMT, gnuplot, ...)
- Daily email bulletins (7 day predictions)
 - Subscribers for
 - Bulletins and warnings $(P > 10^{-4}) \parallel (\Delta R < 300m)$
 - Normal and reduced content volume
- Off-line analyses scheduled by analyst (on request)

Identified shortcomings

- CRASS : fully automated, redundancy, fall-backs
- Handling of high-risk events : manual → work-intensive
 - Implementation of ODINcl (job scheduler on top of ODIN)
 - Automated procedures facilitating
 - Processing of tracking data
 - Update of ephemerides and co-variances
 - Update of conjunction geometries
 - Generation of collision risk figures
 - → Up-to-date picture of situation

Outline

- Introduction
- Scheduled daily analyses and high-risk events
- Automated orbit determination from radar tracks
 - Process
 - Functionalities

ODINcl process

ODINcl process

ODINCI process

ODINcl functionalities

- ODINcl allows automating <u>all</u> ODIN modules
- Optional : repeated execution of similar analyses
- Significantly decreased risk of operator mistakes
- Performance measure : runtime of orbit determination and subsequent conjunction event re-assessment
 - Manual processing on Sun/Solaris : ~1.5h
 - Automated processing with ODINcl on Linux OS $_{\rm i}$ < 0.5h

Outline

- Introduction
- Scheduled daily analyses and high-risk events
- Automated orbit determination from Radar tracks
- Recent high-risk conjunction events
 - Overview
 - Example1 : COSMOS-1624, 2008-Jan-09
 - Example2 : COSMOS-1486, 2007-Nov-14

Overview recent events Jan 2007 – Jul 2008

FGAN tracking data required and processed

... but no performance of avoidance manoeuvres required in period

- Chaser : COSMOS-1624 (15482, 85006A), Strela-2M
 - m = 732.31 kg; $A = 1.77 \text{m}^2$; $i = 74^\circ$; $h \sim 800 \text{km}$
 - Maximum collision probability was determined to be : ~1/1200
- 4 tracks from FGAN on Jan-7 and Jan-8

esa

Epoch [hours since 2008-Jan-07]

- RMS range 21m
- RMS azimuth 0.009 deg
- RMS elevation 0.009 deg

covariance ellipsoid of position prior orbit determination :

covariance ellipsoid of position after orbit determination : better by a factor of 100

- Chaser : COSMOS-1486 (14420, 83079A), Strela-2M
 - m = 732.31 kg; $A = 1.77 \text{m}^2$; $i = 74^\circ$; $h \sim 800 \text{km}$
 - Maximum collision probability was determined to be : ~1/1100
- 5 tracks from FGAN on Nov-12, starting ~2h after request
 - Orbit determination performed from 4 tracks

Epoch [hours since 2007-Nov-12]

- RMS range 17.1m
- RMS azimuth 0.016 deg
- RMS elevation 0.007 deg

Outline

- Introduction
- Scheduled daily analyses and high-risk events
- Automated orbit determination from Radar tracks
- Recent high-risk conjunction events
- Conclusion and outlook

Conclusions and Outlook

- Two major tasks for Envisat and ERS-2
 - Conjunction event detection and collision risk assessment daily, using TLE data and empirical covariance information
 - High-risk events may require additional tracking data (FGAN) avoidance of manoeuvre → improved states and covariances
- Both tasks are highly automated
- CRASS & ODIN : support decisions of space debris analysts and of spacecraft operators
- Current frequency of high-risk event
 - ERS-2 : 5 a^{-1} ; tracking ~1 a^{-1}
 - Envisat : 13 a^{-1} ; tracking ~ 3 a^{-1}

